
Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Protecting against Persistently
Compromised PCI Devices

Making Qubes OS and OpenXT Live Up To Their Promises

Demi Marie Obenour

Invisible Things Lab

2024-03-14



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Introduction

Mitigations
Custom hardware
Firmware fixes

A deployable solution
Device trust
Updating trust

Implementing trust

Conclusion



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

PCI Passthrough

Why use PCI passthrough?
I The only way to isolate drivers for PCI devices.
I Relies on the IOMMU to enforce isolation.
I Believed to be secure if properly implemented...

I ...at least until system reboot!

The problem
I Real devices are stateful.
I Some of that state may be persistant across reboots.

I Option ROMs
I Firmware
I Intentional storage.

I Even when it is not persistant, it may not be cleared by
reset.

I Attackers can exploit this!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

PCI Passthrough

Why use PCI passthrough?
I The only way to isolate drivers for PCI devices.
I Relies on the IOMMU to enforce isolation.
I Believed to be secure if properly implemented...
I ...at least until system reboot!

The problem
I Real devices are stateful.
I Some of that state may be persistant across reboots.

I Option ROMs
I Firmware
I Intentional storage.

I Even when it is not persistant, it may not be cleared by
reset.

I Attackers can exploit this!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

The attack

Attack flow:

1. Compromise a VM with an attached PCI device.

2. Compromise the device itself, or trick it into doing an
operation “late” (after reset).

3. Wait for the host to reset.

4. Exploit the system during boot!

Consequences
I sys-usb ⇒ dom0 or sys-net ⇒ dom0 breakout, if

network or USB device is stateful (integrated or chipset
ones aren’t).

I GPU passthrough isn’t secure.
I Storage passthrough is quite likely not secure.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

The attack

Attack flow:

1. Compromise a VM with an attached PCI device.

2. Compromise the device itself, or trick it into doing an
operation “late” (after reset).

3. Wait for the host to reset.

4. Exploit the system during boot!

Consequences
I sys-usb ⇒ dom0 or sys-net ⇒ dom0 breakout, if

network or USB device is stateful (integrated or chipset
ones aren’t).

I GPU passthrough isn’t secure.
I Storage passthrough is quite likely not secure.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

The attack

Attack flow:

1. Compromise a VM with an attached PCI device.

2. Compromise the device itself, or trick it into doing an
operation “late” (after reset).

3. Wait for the host to reset.

4. Exploit the system during boot!

Consequences
I sys-usb ⇒ dom0 or sys-net ⇒ dom0 breakout, if

network or USB device is stateful (integrated or chipset
ones aren’t).

I GPU passthrough isn’t secure.
I Storage passthrough is quite likely not secure.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

The attack

Attack flow:

1. Compromise a VM with an attached PCI device.

2. Compromise the device itself, or trick it into doing an
operation “late” (after reset).

3. Wait for the host to reset.

4. Exploit the system during boot!

Consequences
I sys-usb ⇒ dom0 or sys-net ⇒ dom0 breakout, if

network or USB device is stateful (integrated or chipset
ones aren’t).

I GPU passthrough isn’t secure.
I Storage passthrough is quite likely not secure.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

The attack

Attack flow:

1. Compromise a VM with an attached PCI device.

2. Compromise the device itself, or trick it into doing an
operation “late” (after reset).

3. Wait for the host to reset.

4. Exploit the system during boot!

Consequences
I sys-usb ⇒ dom0 or sys-net ⇒ dom0 breakout, if

network or USB device is stateful (integrated or chipset
ones aren’t).

I GPU passthrough isn’t secure.
I Storage passthrough is quite likely not secure.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Why does this work?

I IOMMU disabled during ExitBootServices() for
compatibility.

I First-instruction DMA protection requires Boot
Guard/Platform Secure Boot.
I This is therefore a requirement, sadly.

I Some devices, such as GPUs, require option ROMs to
initialize.

I Firmware drivers might be vulnerable to malicious PCI
devices.

I Most importantly, the OS, and likely firmware as well,
trust that devices are what they claim to be.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations
Custom hardware

Firmware fixes

A deployable
solution

Implementing trust

Conclusion

The cloud provider solution
Custom board designs

Cloud providers use custom board designs.
I These may use SPI interposers or even completely

emulated SPI flash.
I This allows the provider to ensure that any persistant

mutable state is wiped out by a device power cycle.
I On-board MCU resets the device while CPU is in reset.

Evaluation:

+ Multi-tenant safe: device can be passed through to one
client, then another.

+ Can be designed into new hardware at reasonable cost.

− Cannot be retrofitted into existing hardware.

− Custom board designs are expensive (unless one is a
cloud provider).



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations
Custom hardware

Firmware fixes

A deployable
solution

Implementing trust

Conclusion

The cloud provider solution
Custom board designs

Cloud providers use custom board designs.
I These may use SPI interposers or even completely

emulated SPI flash.
I This allows the provider to ensure that any persistant

mutable state is wiped out by a device power cycle.
I On-board MCU resets the device while CPU is in reset.

Evaluation:

+ Multi-tenant safe: device can be passed through to one
client, then another.

+ Can be designed into new hardware at reasonable cost.

− Cannot be retrofitted into existing hardware.

− Custom board designs are expensive (unless one is a
cloud provider).



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations
Custom hardware

Firmware fixes

A deployable
solution

Implementing trust

Conclusion

Hardening software against malicious devices
The cheaper solution

I Accept that persistent compromise might happen.
I Design the system to limit the impact of such a

compromise.
I Users should be able to safely use a system even if one or

more of its devices is permanently under attacker
control!

Evaluation:

− Not multi-tenant safe: device cannot be passed from one
user to another.

+ Can be retrofitted into existing hardware.

+ Custom board designs not required!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations
Custom hardware

Firmware fixes

A deployable
solution

Implementing trust

Conclusion

Hardening software against malicious devices
The cheaper solution

I Accept that persistent compromise might happen.
I Design the system to limit the impact of such a

compromise.
I Users should be able to safely use a system even if one or

more of its devices is permanently under attacker
control!

Evaluation:

− Not multi-tenant safe: device cannot be passed from one
user to another.

+ Can be retrofitted into existing hardware.

+ Custom board designs not required!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Device trust

The root cause of this problem is that the firmware and OS
do not know which devices to trust.
I A server can afford to trust no peripherals, provided that

attestation is available.
I A desktop system must trust at least some devices.

I To the user, some of the devices (keyboard, mouse,
microphone, speaker, and display) are the system!

I These devices must not be assigned to an untrusted
entity, and therefore cannot be compromised by a
malicious VM.

I Only devices assigned to a guest must be considered
potentially compromised!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

How do we know which devices can be trusted?

I Most devices do not have a cryptographic identity.
I A device can pretend to be any other kind of device.
I The one unspoofable information about the device is the

physical slot into which it is plugged.
I This turns out to be enough!



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

From physical location to device identity

I Firmware knows which device was shipped in each slot.
I The keyboard will always be in the same place, every

time.
I If there is an NVMe device where the NIC should be,

something is wrong – do not trust that device!

I Firmware also knows which slots were shipped empty
(e.g. extension slots on desktop motherboards).

I Using this information, firmware can determine if a
device should be trusted or not.
I Most devices shipped by the vendor are trusted

(exceptions: NICs, USB controllers, removable media).
I Third-party devices are untrusted by default.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Preserving device identity through boot

I Firmware already provides a very large amount of
information to the OS.

I “Which devices are trusted?” and “What kind of device
is in each slot?” can just be new tables.

I The OS can simply refuse to use devices marked
untrusted in firmware. (Linux: assign them to pciback).

I This works with DRTM too! Firmware can sign the
information during early boot (with a TPM-bound key
that is unusable later) and the MLE can check this
signature.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Exposing device identity to the user

I The OS doesn’t know enough information to tell the user
where each slot is.

I The firmware does, though!
I One can provide the user a visual representation of the

system and each and every slot that it has.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Updating trust

I Devices can go from trusted to untrusted over time.
I New devices may be trusted or untrusted.
I OS informs the firmware that something has changed.
I Firmware uses updated information for new trust

decisions in the future.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Device becomes untrusted

I Alice’s system ships with iGPU and discrete GPU, both
trusted by default.

I Alice assigns their discrete GPU to their Windows
gaming VM.

I Qubes OS tells the firmware that the Nvidia GPU is now
untrusted.

I On subsequent boots, the discrete GPU is not used by
the firmware, and Xen assigns it to the quarantine
domain until it is assigned to the Windows VM.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

New trusted device

I Bob’s system ships with 2TiB NVMe storage.
I Bob decides to add another 2TiB NVMe storage device.
I After next boot, the system pops up a message

explaining the physical location of the slot and asking
the user what they inserted.

I Bob answers that they inserted a trusted NVMe storage
device.

I Subsequent boots will consider this device trusted.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

New untrusted device

1. Clair needs to recover information from a system she
doesn’t trust.

2. She inserts a different NVMe device into a slot.

3. She says the device is untrusted.
4. She assigns the device to a disposable VM, gets the data

off, and reboots.

5. She forgets to remove the device first, but it isn’t a
problem: the device is simply ignored until they unplug
it.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Device remains trusted

1. User assigns a device that has been designed for safe PCI
passthrough.

2. The firmware knows that it can forcibly reset this device
by asserting a GPIO in a way that the device’s firmware
can’t override.

3. Firmware ignores the message and continues to treat
the device as trusted after reboots (but not before
resetting it!).



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution
Device trust

Updating trust

Implementing trust

Conclusion

Device replaced by another device

1. Virgo removes their failing NVMe drive from their
storage slot.

2. After booting, the system forgets about what was in
the slot.

3. When Virgo inserts a new NVMe drive, they are
re-prompted.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Requirements

I No special hardware required!
I Can be retrofitted via firmware update.
I Requires interaction with OS.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Firmware-OS communication
Firmware ⇒ OS

I Firmware already provides many tables to the OS
I A new ACPI is the best choice for x86, as it is used even

by non-UEFI firmware.
I For other platforms, Device Tree or a known location in

memory can be used.
I For DRTM support, the firmware can sign the table early,

with a TPM-bound key that is later unusable.



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Firmware-OS communication
OS ⇒ Firmware

I OS needs to be able to update device trust status.
I On non-DRTM systems, this is possible via EFI variables.
I On DRTM systems, UEFI runtime services are

unavailable for security reasons, unless a protected EFI
call mechanism is available.

I Disabling DRTM is highly undesirable – it might well
mean that the user can’t even boot the OS without a
recovery phrase.

I Possible solution: signed file on the EFI system partition
(signed by TPM)



Protecting against
Persistently

Compromised PCI
Devices

Demi Marie
Obenour

Introduction

Mitigations

A deployable
solution

Implementing trust

Conclusion

Conclusion

I Persistant compromise via PCI devices is a significant
threat to Qubes OS users.

I Thankfully, it is possible to solve this problem via
firmware and OS updates.

I Let’s start working on them!


	Introduction
	Mitigations
	Custom hardware
	Firmware fixes

	A deployable solution
	Device trust
	Updating trust

	Implementing trust
	Conclusion

