
Visualizing Device Trees

Daniel Maslowski



Agenda

Device Tree History
Design of dtvis
Rust and WebAssembly



Thanks for a start!

The development of dtvis has had strong support from our hackerspace.



Device Tree History



…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf


Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf

4https://www.spinics.net/lists/devicetree‑spec/msg00950.html
5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf

4https://www.spinics.net/lists/devicetree‑spec/msg00950.html
5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
4https://www.spinics.net/lists/devicetree‑spec/msg00950.html

5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
4https://www.spinics.net/lists/devicetree‑spec/msg00950.html
5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
4https://www.spinics.net/lists/devicetree‑spec/msg00950.html
5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree


Design of dtvis



Recap: Platform System Interface

The Platform System Interface project (PSI) is a collection of design ideas,
specifications, tools and other resources all around hardware platforms,
firmware, bootloaders, OS interfacing and user experience.

https://github.com/platform‑system‑interface

Talk: Platform System Interface ‑ Design and Evaluation of Computing
as a Whole
in‑depth discussion of design paradigms and complexity in computing
https://metaspora.org/platform‑system‑interface‑computing‑as‑whole.pdf

https://github.com/platform-system-interface
https://metaspora.org/platform-system-interface-computing-as-whole.pdf


Recap: Platform System Interface

The Platform System Interface project (PSI) is a collection of design ideas,
specifications, tools and other resources all around hardware platforms,
firmware, bootloaders, OS interfacing and user experience.

https://github.com/platform‑system‑interface
Talk: Platform System Interface ‑ Design and Evaluation of Computing
as a Whole
in‑depth discussion of design paradigms and complexity in computing
https://metaspora.org/platform‑system‑interface‑computing‑as‑whole.pdf

https://github.com/platform-system-interface
https://metaspora.org/platform-system-interface-computing-as-whole.pdf


What is dtvis?

dtvis is a DeviceTree6 visualizer.

https://github.com/platform‑system‑interface/dtvis

6https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


What is dtvis?

dtvis is a DeviceTree6 visualizer.

https://github.com/platform‑system‑interface/dtvis

6https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


What is dtvis?

dtvis is a DeviceTree6 visualizer.

https://github.com/platform‑system‑interface/dtvis

6https://devicetree.org

https://github.com/platform-system-interface/dtvis
https://devicetree.org


Challenges when Drawing Trees
How do we distribute nodes without overlaps?
How do wemake “good” use of space?
Nodes can have few to dozens of properties.

Strategies
Even distribution
Collapsing



Challenges when Drawing Trees
How do we distribute nodes without overlaps?
How do wemake “good” use of space?
Nodes can have few to dozens of properties.

Strategies
Even distribution
Collapsing



Challenges when Drawing Trees
How do we distribute nodes without overlaps?
How do wemake “good” use of space?
Nodes can have few to dozens of properties.

Strategies
Even distribution
Collapsing



dtvis Design

Currently, we have no overlaps, but trees may grow very wide.



DEMO



Rust and WebAssembly



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust…

… toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm…

…and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!



Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html


The Rust side

extern crate wasm_bindgen;
use gloo_utils::format::JsValueSerdeExt;
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;

/// ...

#[derive(Serialize, Deserialize)]
struct Foo {

bar: u32,
baz: String,

}

#[wasm_bindgen]
pub fn some_fun(data: JsValue) -> JsValue {

/// ...
let foo = Foo::new { bar: 42, baz: "Rust Wasm" };
JsValue::from_serde(&foo).unwrap()

}



The Rust side
extern crate wasm_bindgen;
use gloo_utils::format::JsValueSerdeExt;
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;

/// ...

#[derive(Serialize, Deserialize)]
struct Foo {

bar: u32,
baz: String,

}

#[wasm_bindgen]
pub fn some_fun(data: JsValue) -> JsValue {

/// ...
let foo = Foo::new { bar: 42, baz: "Rust Wasm" };
JsValue::from_serde(&foo).unwrap()

}



The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑rust‑
futures.html

https://rustwasm.github.io/wasm‑bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑rust‑
futures.html

https://rustwasm.github.io/wasm‑bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑rust‑
futures.html

https://rustwasm.github.io/wasm‑bindgen/api/wasm_bindgen_futures/

https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/reference/js-promises-and-rust-futures.html
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


Thanks! :)



Follow Me

Daniel Maslowski

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt

https://github.com/platform‑system‑interface

https://metaspora.org/visualizing‑device‑trees.pdf

License: CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

https://github.com/orangecms
https://twitter.com/orangecms
https://mastodon.social/@cyrevolt
https://twitch.tv/cyrevolt
https://youtube.com/@cyrevolt
https://github.com/platform-system-interface
https://metaspora.org/visualizing-device-trees.pdf
https://creativecommons.org/licenses/by/4.0/

	Device Tree History
	Design of dtvis
	DEMO
	Rust and WebAssembly
	Thanks! :)

