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Thanks for a start!

The development of dtvis has had strong support from our hackerspace.



Device Tree History



…so what is a Device Tree?

IEEE 12751 Standard for Boot (Initialization Configuration) Firmware:
Core Requirements and Practices / Open Firmware2

describing hardware topology for non‑discoverable devices

Linux, U‑Boot, Zephyr, OLPC, FreeBSD and other projects use it
▶ including Apple back in the days

not too elegant, attached to kernel via bindings

only few specified fields, most are “as someone wrote them”
▶ compare e.g. Amlogic vs Allwinner SoC based trees

can range from a few hundred to a thousand nodes

the tree is a lie; there are cycles, e.g., power supplies and clocks

1https://standards.ieee.org/ieee/1275/1932/
2https://www.openfirmware.info/data/docs/of1275.pdf

https://standards.ieee.org/ieee/1275/1932/
https://www.openfirmware.info/data/docs/of1275.pdf
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Previous work
There were discussions on tooling at Linux Plumbers3, partially stalled.

Component Inspector (by Freescale, now NXP)
▶ proprietary, closed source Eclipse plugin
▶ was part of QorIQ Configuration Suite, no longer available

https://github.com/dev‑0x7C6/fdt‑viewer
▶ mixed tree + hex/text viewer, C++ + Qt
▶ supports dtb, dtbo (overlay) and itb (FIT image)

https://github.com/bmx666/dtv‑demo
▶ “RFC ‑ DTV (Device Tree Visualiser)” onmailing list4
▶ dt_s_ only, more of a text editor, Python + Qt6

VS Code plugin plorefice.devicetree5

▶ syntax highlighting + collapsing
▶ could be enhanced with dtvis :‑)

3https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf

4https://www.spinics.net/lists/devicetree‑spec/msg00950.html
5https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree

https://github.com/dev-0x7C6/fdt-viewer
https://github.com/bmx666/dtv-demo
https://elinux.org/images/8/83/Plumbers_2016_dt_device_tree_tools.pdf
https://www.spinics.net/lists/devicetree-spec/msg00950.html
https://marketplace.visualstudio.com/items?itemName=plorefice.devicetree
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Design of dtvis



Recap: Platform System Interface

The Platform System Interface project (PSI) is a collection of design ideas,
specifications, tools and other resources all around hardware platforms,
firmware, bootloaders, OS interfacing and user experience.

https://github.com/platform‑system‑interface

Talk: Platform System Interface ‑ Design and Evaluation of Computing
as a Whole
in‑depth discussion of design paradigms and complexity in computing
https://metaspora.org/platform‑system‑interface‑computing‑as‑whole.pdf

https://github.com/platform-system-interface
https://metaspora.org/platform-system-interface-computing-as-whole.pdf
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What is dtvis?

dtvis is a DeviceTree6 visualizer.

https://github.com/platform‑system‑interface/dtvis

6https://devicetree.org
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Challenges when Drawing Trees
How do we distribute nodes without overlaps?
How do wemake “good” use of space?
Nodes can have few to dozens of properties.

Strategies
Even distribution
Collapsing
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dtvis Design

Currently, we have no overlaps, but trees may grow very wide.



DEMO



Rust and WebAssembly



What if…

…we compile Rust… … toWasm… …and use it in an app?

Magic happens ‑ we can use native code on web platforms!
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Howto

Getting started
https://lannonbr.com/blog/2020‑01‑07‑rust‑wasmpack/
https://rustwasm.github.io/docs/wasm‑pack/

TL;DR
cargo install wasm-pack
wasm-pack new my-rust-wasm-foo

The glue
https://github.com/wasm‑tool/wasm‑pack‑plugin
https://rustwasm.github.io/docs/wasm‑pack/tutorials/hybrid‑applications‑
with‑webpack/using‑your‑library.html

More glue
cargo add gloo-utils

https://lannonbr.com/blog/2020-01-07-rust-wasmpack/
https://rustwasm.github.io/docs/wasm-pack/
https://github.com/wasm-tool/wasm-pack-plugin
https://rustwasm.github.io/docs/wasm-pack/tutorials/hybrid-applications-with-webpack/using-your-library.html
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The Rust side

extern crate wasm_bindgen;
use gloo_utils::format::JsValueSerdeExt;
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;

/// ...

#[derive(Serialize, Deserialize)]
struct Foo {

bar: u32,
baz: String,

}

#[wasm_bindgen]
pub fn some_fun(data: JsValue) -> JsValue {

/// ...
let foo = Foo::new { bar: 42, baz: "Rust Wasm" };
JsValue::from_serde(&foo).unwrap()

}
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The JavaScript side

import { some_fun } from "./rs/pkg";

/* ... */
const res = some_fun({ woopWoop: 1337 });
console.info(res);

/* ... */

But that is synchronous and blocking!

https://rustwasm.github.io/wasm‑bindgen/reference/js‑promises‑and‑rust‑
futures.html

https://rustwasm.github.io/wasm‑bindgen/api/wasm_bindgen_futures/
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Thanks! :)
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