
HBFA-FL: Host-based Firmware 
Analyzer-Fuzzing Lite

Dasharo User Group #6 and vPub 0xB

Brian Delgado, Erik C. Bjorge, Antonio Gomez-Iglesias, and Earl 
“Lynn” Tipton



Intel ConfidentialDepartment or Event Name 2Dasharo User Group #6 and vPub 0xB 2

Background

Thanks to many contributors for helping make HBFA-FL
• Disclaimer: Views expressed are my 

own. All opinions are my own. The 
opinions expressed here belong 
solely to me and do not reflect the 
views of my employer Intel.

• Original authors of HBFA and other 
maintainers/contributors:
• Brian Richardson, Chris Wu, Jiewen Yao, and 

Vincent J. Zimmer
• Wei Liu

• Others including: 
• Tamas Lengyel
• Miki Demeter
• Lelia Barlow

• In addition to HBFA-FL note the 
project TSFFS by Rowan et al. 
https://github.com/intel/tsffs 

• My background:
• Background in vulnerability 

research and reverse engineering 
software and hardware

• Security researcher at Intel
• Efforts spanning low-level up to 

cloud
• Fuzzing of system software
• Cloud security

https://github.com/intel/tsffs


Intel ConfidentialDepartment or Event Name 3Dasharo User Group #6 and vPub 0xB 3

Organization 

Host-based Firmware Analysis: Fuzzing-Lite

• Fuzz-testing for UEFI

• HBFA: TianoCore edk2-staging branch (2019)

• Motivation – Goals for enhancing HBFA

• Current efforts and features (workflow)

• Fuzzing Efforts - Issues found with HBFA-FL

• Demo



Intel ConfidentialDepartment or Event Name 4Dasharo User Group #6 and vPub 0xB 4

Fuzz Testing for UEFI

Fuzzing is a part of a suite of methods that should be used to enhance security

• A variety of validation should be 
used, including: †
• Code review
• Symbolic execution
• Unit testing
• Fuzz testing

• Pick one: Unit testing vs general fuzz 
testing - “Our opinion is that you 
don’t pick just one testing method” ‡

• “Using fuzzers in unit testing is most 
effective on verifying low-level UEFI 
PI interfaces prior to integration” ‡ 

• Enhance and reduce challenges to 
leverage tools/frameworks for 
fuzzing in UEFI

† “Firmware Secure Coding Webinar” UEFI Forum 
03/2019: https://uefi.org/node/3942 
‡ UEFI Forum, 11/2019: https://uefi.org/node/4020

https://uefi.org/node/3942
https://uefi.org/node/4020


Intel ConfidentialDepartment or Event Name 5Dasharo User Group #6 and vPub 0xB 5

HBFA: Tianocore edk2-staging branch

Host-based Firmware Analyzer (HBFA)
• Contributed to edk2-staging 

branch by Intel in April 2019†
• Enables fuzzing/testing of UEFI 

drivers and Platform Initialization 
(PI) drivers 

• Integrates several fuzzers & 
features
• AFL, LibFuzzer, Peach
• Simple GUI 
• Fault injection, KLEE/STP, Code 

coverage
• Several unit/fuzz test cases 

included

• Original whitepaper 2019‡

† https://github.com/tianocore/tianocore.github.io/wiki/Host-Based-Firmware-Analyzer 

‡ https://www.intel.com/content/dam/develop/external/us/en/documents/
intel-usinghbfatoimproveplatformresiliency-820238.pdf 

https://github.com/tianocore/tianocore.github.io/wiki/Host-Based-Firmware-Analyzer
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-usinghbfatoimproveplatformresiliency-820238.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-usinghbfatoimproveplatformresiliency-820238.pdf


Intel ConfidentialDepartment or Event Name 6Dasharo User Group #6 and vPub 0xB 6

Motivation – Goals for Enhancing HBFA

Update, Improve, Enhance, and Reduce 
• Need to support fuzzing efforts for UEFI at Intel

• CI/CD integration is essential 

• Original tool required a lot of manual setup to 
use

• Automate and enhance useability 

• Update to support 
• Leverage additional sanitizer options 

• Add new features

• Focus not on GUI or Windows support

• Focus on:
• Linux environment, CLI use
• Fuzzing with AFL and LibFuzzer

• Upstream to community, ready code-base to 
enable OSS-Fuzz

• Find bugs ;)



Intel ConfidentialDepartment or Event Name 7Dasharo User Group #6 and vPub 0xB 7

Current efforts and features for HBFA-FL

Current focus/state

• Now works with newer versions: Clang/LibFuzzer

• Additional/finer granularity on selection of sanitizers (ASAN, 
MSAN, UBSAN)

• Updates to coverage data (LCOV and LLVM-tool output)

• Several of original HBFA unit/fuzzing test-cases build and 
working (some fixes)

• All new documentation and training materials 
• See: https://intel.github.io/HBFA-FL/src/index.html 

• Intel Open-source Repository HBFA-FL: 
https://github.com/intel/HBFA-FL/tree/main 

• Supports fuzzing of EDK2 per OSS-Fuzz:
https://github.com/google/oss-fuzz/tree/master/projects/edk2 

https://intel.github.io/HBFA-FL/src/index.html
https://github.com/intel/HBFA-FL/tree/main
https://github.com/google/oss-fuzz/tree/master/projects/edk2


Intel ConfidentialDepartment or Event Name 8Dasharo User Group #6 and vPub 0xB 8

HBFA-FL: General Workflow

1. Build a suitable environment for EDK2 and HBFA-FL

• Easy approach: leverage container 
build from Tianocore:
• https://github.com/tianocore/containers 

• E.g. 
ghcr.io/tianocore/containers/ubuntu-22-
build

• Follow steps from our documentation:
• https://github.com/intel/HBFA-

FL/blob/main/docs/src/setup/linux.md 

• Take note of setting-up path and 
environmental variables

https://github.com/tianocore/containers
https://github.com/intel/HBFA-FL/blob/main/docs/src/setup/linux.md
https://github.com/intel/HBFA-FL/blob/main/docs/src/setup/linux.md


Intel ConfidentialDepartment or Event Name 9Dasharo User Group #6 and vPub 0xB 9

HBFA-FL: General Workflow (continued)

2. Select or develop fuzzing harness & input corpus

• Option 1 – Use Existing 
Fuzzing Test Harness:
• Original HBFA fuzzing test 

cases and corresponding test 
corpus included

• See:
https://github.com/intel/HBFA-
FL/blob/main/docs/src/harness/incl
udedfuzzharnesses.md 

https://github.com/intel/HBFA-FL/blob/main/docs/src/harness/includedfuzzharnesses.md
https://github.com/intel/HBFA-FL/blob/main/docs/src/harness/includedfuzzharnesses.md
https://github.com/intel/HBFA-FL/blob/main/docs/src/harness/includedfuzzharnesses.md


Intel ConfidentialDepartment or Event Name 10Dasharo User Group #6 and vPub 0xB 10

HBFA-FL: General Workflow (continued)

2. Select or develop fuzzing harness & input corpus
• Option 2 - Developing a 

fuzzing test harness
• Need to write test harness:

• C-source-code module and associated 
module description file (.inf)

• Plumb in reference to the module in 
description file used by HBFA platform

• See our tutorial (full-walkthrough): 
https://github.com/intel/HBFA-
FL/blob/main/docs/src/tutorials/writin
gafuzzingharness.md 

• Note, one may need to stub-out 
(e.g. mimic responses from 
hardware) 
• Several stub-libraries are included 

https://github.com/intel/HBFA-FL/blob/main/docs/src/tutorials/writingafuzzingharness.md
https://github.com/intel/HBFA-FL/blob/main/docs/src/tutorials/writingafuzzingharness.md
https://github.com/intel/HBFA-FL/blob/main/docs/src/tutorials/writingafuzzingharness.md


Intel ConfidentialDepartment or Event Name 11Dasharo User Group #6 and vPub 0xB 11

HBFA-FL: General Workflow (continued)

3. Building and running fuzzing test-cases 

A. EDK2 Build System

Platform

Test-case



Intel ConfidentialDepartment or Event Name 12Dasharo User Group #6 and vPub 0xB 12

HBFA-FL: General Workflow (continued)

3. Building and running fuzzing test-cases 

B. RunAFL.py or RunLibFuzzer.py 
(recommended approach)

-a Architecture: X64/IA32
-m Test case module
-i Seed corpus directory
-o output directory



Intel ConfidentialDepartment or Event Name 13Dasharo User Group #6 and vPub 0xB 13

HBFA-FL: General Workflow (continued)

3. Building and running fuzzing test-cases 

B. RunAFL.py or RunLibFuzzer.py 
(recommended approach)

• BONUS: Supports additional options

-a Architecture: X64/IA32
-m Test case module
-i Seed corpus directory
-o output directory

Other options include: “-s” for sanitizers (ASAN, MSAN, UBSAN) and “-p” if Profraw code coverage desired



Intel ConfidentialDepartment or Event Name 14Dasharo User Group #6 and vPub 0xB 14

HBFA-FL: General Workflow (continued)

4. Generate Fuzzing and Code Coverage Reports

• Three steps for Code Coverage:
1. Run the normal fuzzing case (e.g. 

RunAFL.py)

2. Run ReportMain.py

3. Run GenCodeCoverage.py



Intel ConfidentialDepartment or Event Name 15Dasharo User Group #6 and vPub 0xB 15

Bugs/Vulns/Issues Found

Fuzzing runs with HBFA-FL 

• Fuzzing campaigns (2 x 2-
months) and ongoing 

• Initial campaign: 
• ~200 crashes distilled down to 

~12 unique crashes/issues

• 6 in EDK2 source

• 6 in HBFA code 
(harnesses/support code)

• Some bugs found with help of 
sanitizers (ASAN, UBSAN)

• Reported to Tianocore/EDK2
• 3 new security bugs

• 1 additional, found to be duplicate with one 
reported

• 1 vulnerability resulting in code execution
• Other 2 issues: a SIGSEG (read offset from 

Null page) and an integer overflow

• 1 bug (Tianocore Bugzilla 4383)
• check on max endpoints in Pei USB device 

descriptor only protected by assert
• discovered by triggering assert fuzzing, then 

code review

• 1 additional already reported (heap 
overflow)

• Prior report over a year before our discovery

• OSS-Fuzz: Ongoing



Intel ConfidentialDepartment or Event Name 16Dasharo User Group #6 and vPub 0xB 16

Questions (?)

Ideas, Comments, Suggestions, …

• Intel Open-source Repository HBFA-FL: 
• https://github.com/intel/HBFA-FL/tree/main 

• Email: 

• earl.lynn.tipton@intel.com

https://github.com/intel/HBFA-FL/tree/main
mailto:earl.lynn.tipton@intel.com



	Slide 1: HBFA-FL: Host-based Firmware Analyzer-Fuzzing Lite
	Slide 2: Background
	Slide 3: Organization 
	Slide 4: Fuzz Testing for UEFI
	Slide 5: HBFA: Tianocore edk2-staging branch
	Slide 6: Motivation – Goals for Enhancing HBFA
	Slide 7: Current efforts and features for HBFA-FL
	Slide 8: HBFA-FL: General Workflow
	Slide 9: HBFA-FL: General Workflow (continued)
	Slide 10: HBFA-FL: General Workflow (continued)
	Slide 11: HBFA-FL: General Workflow (continued)
	Slide 12: HBFA-FL: General Workflow (continued)
	Slide 13: HBFA-FL: General Workflow (continued)
	Slide 14: HBFA-FL: General Workflow (continued)
	Slide 15: Bugs/Vulns/Issues Found
	Slide 16: Questions (?)
	Slide 17

